Search results for "Exponential polynomial"

showing 3 items of 3 documents

An annihilator-based strategy for the automatic detection of exponential polynomial spaces in subdivision

2021

Abstract Exponential polynomials are essential in subdivision for the reconstruction of specific families of curves and surfaces, such as conic sections and quadric surfaces. It is well known that if a linear subdivision scheme is able to reproduce a certain space of exponential polynomials, then it must be level-dependent, with rules depending on the frequencies (and eventual multiplicities) defining the considered space. This work discusses a general strategy that exploits annihilating operators to locally detect those frequencies directly from the given data and therefore to choose the correct subdivision rule to be applied. This is intended as a first step towards the construction of se…

Pure mathematicsbusiness.industryGeneralizationUnivariateAerospace EngineeringSpace (mathematics)Computer Graphics and Computer-Aided DesignExponential polynomialAnnihilatorConic sectionModeling and SimulationScheme (mathematics)Automotive EngineeringbusinessSubdivisionMathematics
researchProduct

A-Codes from Rational Functions over Galois Rings

2006

In this paper, we describe authentication codes via (generalized) Gray images of suitable codes over Galois rings. Exponential sums over these rings help determine--or bound--the parameters of such codes.

Discrete mathematicsMathematics::Commutative AlgebraApplied MathematicsFundamental theorem of Galois theoryGalois groupRational functionExponential polynomialComputer Science ApplicationsEmbedding problemDifferential Galois theorysymbols.namesakeGalois rings Gray map codesComputer Science::Computer Vision and Pattern RecognitionComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONComputer Science::MultimediasymbolsSettore MAT/03 - GeometriaGalois extensionResolventMathematicsDesigns, Codes and Cryptography
researchProduct

Degrees of irreducible characters of the symmetric group and exponential growth

2015

We consider sequences of degrees of ordinary irreducible S n S_n - characters. We assume that the corresponding Young diagrams have rows and columns bounded by some linear function of n n with leading coefficient less than one. We show that any such sequence has at least exponential growth and we compute an explicit bound.

CharacterPower sum symmetric polynomialGeneral MathematicsApplied MathematicsMathematicsofComputing_GENERALComplete homogeneous symmetric polynomialExponential polynomialExponential growthCombinatoricsRepresentation theory of the symmetric groupSymmetric groupElementary symmetric polynomialMathematics (all)Ring of symmetric functionsCharacter groupSymmetric groupMathematics
researchProduct